The multi-scale dynamics of signal transduction: dissecting the MAPK pathway

A project funded by WWTF within the program Mathematics and ... 2014 as project MA14-49

project duration: 1.5. 2016 - 30.4.2019


Project partners:

Manuela Baccarini (Vienna University)

Tomasz Lipniacki (Polish Academy of Sciences, Warsaw)

Peter Szmolyan


Project description:

Biological and mathematical questions about the ERK-pathway are studied through both experimental and mathematical methods. The components of the cascade or their upstream regulators are activated in most human tumors. Thus, the pathway has great biomedical importance, and its components are prime therapeutic targets. Feedback loops and crosstalks with other signaling pathways generate a complex behavior which can only be analyzed by help of mathematical models. Typically, such models are large systems of differential equations exhibiting multi-scale behavior encompassing different time (or spatial) scales of the regulatory process. The dynamic complexity of regulatory systems is reflected, however, not by the dimension of the system, but rather by the number of feedback loops which is typically much smaller, allowing systematic model reduction into much smaller systems, which exhibit qualitatively the same dynamics. In this project we focus on model reduction and qualitative analysis based on novel dynamical systems methods for multi-scale systems. We follow an integrated collaborative approach to study dynamic responses of the MAPK/ERK pathway based on:  experiments (targeting the key components of the pathway by knockouts), development of mathematical models, simulations, derivation and mathematical analysis of  (a hierarchy) of simplified models, and identification of key components and parameters of biological significance.